Products of Factorial Schur Functions
نویسنده
چکیده
The product of any finite number of factorial Schur functions can be expanded as a Z[y]-linear combination of Schur functions. We give a rule for computing the coefficients in such an expansion which generalizes a specialization of the Molev-Sagan rule, which in turn generalizes the classical Littlewood-Richardson rule.
منابع مشابه
Products of Schur and Factorial Schur Functions
The product of any finite number of Schur and factorial Schur functions can be expanded as a Z[y]-linear combination of Schur functions. We give a rule for computing the coefficients in such an expansion which generalizes the classical Littlewood-Richardson rule.
متن کاملFactorial Schur Functions and the Yang-Baxter Equation
Factorial Schur functions are generalizations of Schur functions that have, in addition to the usual variables, a second family of “shift” parameters. We show that a factorial Schur function times a deformation of the Weyl denominator may be expressed as the partition function of a particular statistical-mechanical system (six-vertex model). The proof is based on the Yang-Baxter equation. There...
متن کاملA Littlewood-Richardson Rule for factorial Schur functions
We give a combinatorial rule for calculating the coe cients in the expansion of a product of two factorial Schur functions. It is a special case of a more general rule which also gives the coe cients in the expansion of a skew factorial Schur function. Applications to Capelli operators and quantum immanants are also given.
متن کاملSchur Type Functions Associated with Polynomial Sequences of Binomial Type
We introduce a class of Schur type functions associated with polynomial sequences of binomial type. This can be regarded as a generalization of the ordinary Schur functions and the factorial Schur functions. This generalization satisfies some interesting expansion formulas, in which there is a curious duality. Moreover this class includes examples which are useful to describe the eigenvalues of...
متن کاملShift Operators and Factorial Symmetric Functions
A new class of symmetric functions called factorial Schur symmetric functions has recently been discovered in connection with a branch of mathematical physics. We align this theory more closely with the s tandard symmetric function theory, giving the factorial Schur function a tableau definition, introducing a shift operator and a new generat ing function with which we extend to factorial symme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 15 شماره
صفحات -
تاریخ انتشار 2008